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Abstrac t - -An  initial attempt to develop a method of strain analysis based on shape modifications to continuous 
frequency distributions of structural data during deformation is described. The method uses the dimensionless 
coefficients of skewness (/31 = skewness2/variance 3) and kurtosis (/32 = kurtosis/variance 2) and although the 
justification for adopting these parameters is complex, the actual calculation of/31 and/32 is relatively simple. 
Different frequency distributions can be accurately distinguished by plotting graphs of/31 against/32. Since the 
effect of strain on a frequency distribution is to modify its shape, theoretically determined shape modifications 
can be followed on/31 vs/32 graphs for increasing strain and hence the graphs are automatically contoured in terms 
of strain. The strains involved in natural deformations can then be estimated by plotting on the graphs the/31,132 
values for observed continuous frequency distributions. Various examples of the application of this technique are 
discussed using data from the literature. 

INTRODUCTION 

THIS brief contribution outlines an initial at tempt to 
develop a method of strain analysis using the shape of 
continuous frequency distributions. Distribution shape 
is preferred to other  more commonly employed statistics 
(e.g. mean, variance, median and mode) since it is 
usually characteristic for a particular distribution and 
can be represented simply by a pair of dimensionless 
coefficients. The philosophy behind this approach is that 
any initial continuous frequency distribution of struc- 
tural elements (e.g. orientations, spacings, lengths, etc.) 
is t ransformed by progressive deformation into a strain- 
modified distribution, the shape of which is a function of 
the type and magnitude of the deformation.  In most 
cases distribution shape can be described in terms of 
the dimensionless coefficients of skewness and kurtosis 
(Elderton & Johnson 1969, Harr  1977), 

fll = skewness2/variance 3 
/32 = kurtosis/variance 2. (1) 

The former  coefficient defines the symmetry of the 
distribution and the latter its peakedness. The justifica- 
tion for using these two parameters  is presented in the 
next section. 

THEORETICAL JUSTIFICATION: 
DISTRIBUTION CLASSIFICATION 

The following theoretical discussion is based on the 
classification of continuous frequency distributions 
suggested by Karl Pearson (for a complete review of his 
work see Elder ton & Johnson 1969). 

In general, continuous frequency distributions can be 
considered to begin at zero, rise to a maximum and then 
fall away (often at a different rate) such that there is 
usually high contact at the ends of the distribution. To 
represent this behaviour mathematically a series of 

equations y = f(x), y = ~b(x) is required in which 
dy/dx = 0 for specific values of x (e.g. at the maximum 
and at the end of the curve where there is contact with 
the x axis). This suggests that 

dy 
dx - y(x + Xo)/F(x), (2) 

since dy/dx = 0 if y = 0 or x = x0; the former corres- 
ponds to the contact with the x axis at one end of the 
curve and the latter represents the curve maximum if x0 
is defined as the distance between the origin and the 
mode. Rearranging equation (2) and expanding F(x) by 
Maclaurin's theorem yields 

(bo + blX + b2x 2 + .) dy .. -~ = y(x + Xo), (3) 

in which b0, bt, b2, etc. are constants. 
The majority of continuous frequency distributions 

can be generated from equation (3) firstly by multiplying 
by x" and then integrating with respect to x, 

xn(bo + blx + b2x 2 + . . . ) y  

- I [nb°xn-1 + (n + 1)blx ~ + (n + 2)bzx ~+1 + .]ydx 

The expression x"(bo + blx + b2 x2 + . . . )y vanishes at the 
ends of a frequency curve. Thus by writing tx n = I Y xn dx 
and rearranging, equation (4) becomes 

XotX n + nbotxn_l + (n + 1)bl/X n 

+ (n + 2)bz/x,+ l + . . . =  -/zn+ I. (5) 

For successive positive integer values of n from zero to s, 
s + 1 equations are formed which allow the constants to 
be determined: 

225 



226 G . E .  LLOYD 

Xo/1o + 0b0 + lbdz 0 + 2b2pq = -/11 

x0/11 + lb0/10 + 2b1/x1 + 3b2/x2 = -/z2 (6) 
x0/12 + 2b0/11 + 3bl/12 + 4b2/13 = -/13 

x0/13 + 3b0/12 + 4bl/13 + 5b2/14 = -/14. 

It is usually convenient to make the mean the origin of 
the distribution, in which case x0 becomes the distance 
between the mean and the mode and it is necessary to 
amend the other terms accordingly. Assuming grouped 
data, these become 

/11 = ~ { fixi} = sample mean 
i=1 

1 ~ {fi(xi -/11) 2} = sample variance 
i=1 (7) 

/13 = ~ z-~ { f i (Xi  -- /1"1'1) 3 } = sample s k e w n e s s  
i=l  

/14 = ~ {fl(xi -/11) 4} = sample kurtosis 
i=1 

in which m is the number of data groups, xi and f /are  the 
midpoint and frequency of the ith group and N is the 
sample size. It is also convenient to treat/10 as unity and 
together these simplifications lead to a set of simultane- 
ous equations which can be solved and substituted into 
equation (3) to give 

1 dy _ x + (M1/M2) 
y dx ( M  3 + M I X  + M4x2) /M2  

with: M t I/2,.-H/2z~ = /Z2 JOl t P 2  -[- 3 )  ( 8 )  
M R = 2(5/32 - 6/31- 9) 
M 3 = /12(4/32 - 3/31) 
M4 = 2/32 - 3/31 - 6 

[4(2/32 -- 3/31 -- 6)(4/32 -- 3/31)] which is usually denoted 
by the symbol K. 

Pearson called K the criterion and used it to classify 
the different types of continuous frequency distributions 
(although he found it useful to employ other 'criteria' as 
well; see Elderton & Johnson 1969). However, since all 
the 'criteria' are functions of the parameters/31 and/32 it 
is possible to distinguish between different distributions 
using these terms; Harr (1977) suggested they should be 
plotted against each other (Fig. 1). It is proposed that 
plots of/31 VS /32 are capable of distinguishing between 
initial and strain-modified distributions and hence can 
be used to give estimates of the magnitude of finite 
strains and also the types of strains involved. The next 
section discusses this approach. 

NO DISTRIBUTIONS REVERSE ] 
J 

CLUSTERED 
{]; ¢ UN~ORI~ ?USSI~N 5 6 ~' i ...... sing peaked~j .... I'0 

BETA TWO 
Fig. 1. G r a p h  of/31 vs/32 dis t inguishing regions  of  d i f ferent  d is t r ibut ion  

types (modified from Hart 1977). 

where/31 = /12//13, /32 = //'4///" 2 [in agreement with equa- 
tion (1)] and x0 = /1~/2/3]/2(/32 + 3)/2(5/32 - 6/31 - 9); 
note that/1~/2 is the standard deviation. 

By inserting the values of the sample moments into 
equation (8) it is possible to obtain a formula represerita- 
tive of the distribution data. However, this formula is 
not of exactly the same form as the original data. A truly 
representative formula can be obtained if (x + Xo)/ 
(bo + blx + b2 x2 . . .) is  integrated. This is possible by 
recognising equation (8) as a general expression for 
integration and observing that the form the integral 
takes depends on the particular values of the coefficients 
of x in the denominator for 

[ -b l  + (b2=- 4bob2) 1'2] 
blX q- b2 x2 = b 2 x - 2b2  

× [ /  -b l  - (b2-4b°b2)1/2] 
- 2-b~ • (9)  

The basis for fixing the particular form is the same as 
that for the nature of the roots of the equation 
bo + blx + b2x 2 = 0; that is b2t/(4bob2). By substitut- 
ing from equation (8) this gives [/31(/32 + 3)2]/ 

S T R A I N  A N A L Y S I S  U S I N G  ~1 vs  f12 
G R A P H S  

Although graphs of/31 vs/32 are capable of distinguish- 
ing between different continuous frequency distribu- 
tions, in this simple form they do not reveal any informa- 
tion on strain. The use of such graphs in strain analysis 
requires that the effects of different types and amounts 
of strain on initial frequency distributions are known. 
The values of /31 and /32 for the various theoretical 
strain-modified distributions would then be calculated 
and hence the graphs contoured in terms of strain mag- 
nitudes, with different graphs constructed for different 
types of strain. It would then be a relatively simple 
matter to calculate the/31 and/32 values for natural data 
and hence to determine the type and magnitude of the 
natural finite strains. 

An important pre-requisite for this technique is that 
the theory exists for the modification of an initial distri- 
bution by a particular type of strain. To date, only two 
such theories are known in the literature and concern the 
effects of homogeneous irrotational strains on initially 
Gaussian and uniformly distributed data. 
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Strain-modified Gaussian distributions 

Sanderson (1973) studied the effect of homogeneous 
irrotational strain on orientation data with an initial 
Gaussian distribution. He showed that the Gaussian 
distribution (maintaining the present notation) 

) F -  (Eff/zE)l/2 exp 1 (90 - 0) 2 

is modified to 

( 1 ( 9 0 - 0 ) 2 )  F' - N exp - ~ 2  
(27"/'/2,2) 1/2 

× [(X/Y) E cos 2 (0 - 4>) + sin E (0 - ¢)]3/E 

(x/Y) 

(lOa) 

(lOb) 

in which N is the sample size, /x 1/E is the standard 
deviation of the initial distribution, 0 is the angle 
between the observed direction and the extension direc- 
tion (X) of the finite strain ellipsoid (X t> Y >I Z), 4> is 
the angle between the initial mean and the normal to the 
extension direction and X / Y  is the strain ratio. For 
~b = 0 the initial distribution is perpendicular to Xbut  as 
the strain increases the distribution spreads and then 
splits into two maxima symmetrical about X (Sanderson 
1973; see Fig. 2a). For th ~ 0 the initial distribution is 
oblique to X and as the strain increases the peak rotates 
towards X with a subsidiary peak developing after a 
certain value of strain (Sanderson 1973; see Fig. 2b). 

The /31 and /32 values of strain-modified Gaussian 
distributions have been determined and plotted on a 
graph of/31 vs/32 for different strains and values of ~b but 
constant standard deviation (Fig. 3). For ~b = 0 all the 
distributions are symmetrical and therefore plot along 
the/32 axis but since incrcasing strain causes a change 
from unimodality to bimodality there is a gradual migra- 
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Fig. 2. Homogeneous irrotational strain-modified Gaussian distribu- 
tions (modified from Sanderson 1973); X / Y  is the strain-ratio,/x~ e is 
the standard deviation of the initial distribution and 4> is the angle 
between the mean direction of the initial distribution and the normal 

to the extension direction (X).  

tion towards smaller values of/32. For ~b ~ 0 the distribu- 
tions are not symmetrical and plot further away from the 
/32 axis with increasing ~b, lying on distinctive curves for 
each value of ¢. Note that while ~b remains small the 
strain-modified distributions eventually become bi- 
modal, but for larger values of ¢ they remain unimodal. 

Having drawn the distinctive curves for each value of 
~b it is possible to join together the points of equal strain 
(Fig. 3). For small strains these are slightly curved but 
for larger strains ( X / Y  >,~3) they may be considered as 
linear. This operation therefore contours the/31 vs/32 
graphs in terms of strain and makes them extremely 
useful in the estimation of finite homogeneous irrota- 
tional strains as the following examples show. 

X/Y=5O 20 109 8 7 6 5 4 

z w ¢.-7. 

0'5 (~ 5 .see / 

0 . . . .  , I I U I , [ ' I , I , . . . .  ' 

1"5 2 2-5 3 3"5 
BETA TWO 

Fig. 3. Strain contoured fll vs/3 2 graph for homogeneous irrotational strain-modified Gaussian orientation distributions with 
/~I ~2 = 20 °. 
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Table 1. Compar ison  between strain magni tudes  obtained using Sanderson 's  (1973) technique for homogeneous  irrotational strain-modified 
Gauss ian orientation distributions and those using fll vs/32 graphs;/.t~ n = s tandard deviation, X/Y = strain ratio; th = angle between initial 

mean  and normal  to final extension direction (i.e. Y-axis) 

Sanderson 1973 

Observed fold axis 
distribution 
Boscastle 

(Fig. 4) 
tz~ n = 20 ° 

Roberts  & Sanderson 1974 

Original fold axis Strain modified fold axis distribution 
distribution 
Craignish Knapdale  steep belt Loch Tay inversion Aberfoyle Anticline 
(Fig. 5a) (Fig. 5b) (Fig. 5c) (Fig. 5d) 

/z~n = 21 ° ~,~n = 20 ° /xi;2 = 20 ° /z~/2 = 25 ° 

Sanderson 
xly 4-5 

4~ 5 ° 

This paper  
X/Y 6.5 
6 8 ° 
fll 0.765 
32 2.012 

very low ( -  1) 3.5 4 4 
11.6 ° 5 ° 15 ° 3 ° 

1.2 4.5 5.75 6.75 
26.5 ° 4.5 ° 17 ° 6 ° 

0.112 0.171 3.922 0.298 
3.416 1.589 5.748 1.484 

Examples of  strain-modified Gaussian d&tributions 

Sanderson (1973) applied his model to fold axes which 
occur oblique to the regional trend. He assumed that the 
fold axes originally had a Gaussian distribution (/xl/2 = 
20 °) about the Y axis of the strain ellipsoid but were 
subsequently rotated towards the X direction by further 
(stretching) deformation within the axial planes of the 
folds. The initial distribution was consequently modified 
by passive rotation and relative elongation of fold 
axes within the XY plane of the deformation to pro- 
duce a slightly asymmetric final distribution with a sub- 
sidiary maximum (Fig. 4), suggesting that tb > 0 °. 
Sanderson therefore used ~b = 5 ° and thus determined 
that 4 < X / Y  < 5. The method described here,  using a 
strain-contoured /31 vs /32 graph for /./,1/2 = 20 o, gives 
4~ = 8 ° and X / Y  = 6.5 (Table 1). 

In a subsequent use of Sanderson's model Roberts  & 
Sanderson (1974) have analysed the variation in patterns 
of fold axis distributions across the Scottish SW High- 
lands, which they attribute to varying amounts of defor- 
mation and to the initial attitude of the mean fold axis 
relative to the finite strain axes. They argued that the 
folds formed with a mean fold axis nearly perpendicular 
to the stretching direction and that this original Gaussian 
distribution can still be recognised in areas where the 
subsequent deformation was low (e.g. at Craignish, see 
Fig. 5a). There  is a progressive modification of the initial 
distribution southeastwards across the region from 
Craignish through the Knapdale steep belt and Loch Tay 

>- 20- 

- 

a :10 .  
t l .  

£ 

90 0 g0 
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Fig. 4. Orientat ion frequency distribution histogram of angles between 
stretching lineation (X) and fold axes, Boscastle,  Cornwall (modified 

from Sanderson 1973). 

inversion to the Aberfoyle Anticline (Fig. 5). There  is 
also some variation in the values of py2 and th, especially 
near Loch Tay where the initial mean fold axis direction 
was somewhat oblique to the stretching direction (Table 
1). Roberts & Sanderson (1974) showed that there must 
have been a progressive increase in strain southeast- 
wards from Craignish ( X / Y  ~- 1) towards the Loch Tay 
inversion and Aberfoyle Anticline ( X / Y  ~ 4). The 
technique described here has been applied to the data 
shown in Fig. 5, using strain-contoured/31 VS /32 graphs 
for the different values of/xl n, and shows a similar trend, 
although the strain continues to increase into the 
Aberfoyle Anticline (Table 1). The present technique 
also recognises the more oblique initial fold-axis 
distribution in the Loch Tay inversion and suggests that 
the distribution at Craignish is not the initial Gaussian 
distribution but is the result of very slight stretching 
( X / Y  = 1.2) of an oblique (th = 26.5 ° ) fold axis 
distribution. 

In general, the strain estimates obtained using the 
method described here are somewhat larger than those 
obtainrd using Sanderson's original approach. The most 
likely reason for the discrepancy lies with the method of 
comparing the observed and expected distributions. 
Sanderson uses coincidence of modes but this does not 
reflect variations in other  regions, especially where fre- 
quencies are low. In contrast, the theoretical derivation 
of Pearson's classification and /31 and /32 contains 
implicitly a very rigorous comparison test which consid- 
ers equally the whole range of the different distributions. 

Strain-modified uniform distributions 

Sanderson (1977) considered also the effect of 
homogeneous irrotational strain on orientation data 
with an initial uniform distribution. He showed that the 
uniform frequency distribution in a sector subtended by 
an angle a,  

F = Nt~/2rc ( l l a )  

is modified to 

F'  N [tan_ 1 (R s tan 0~) - tan -1 (Rs tan 0'i)] ( l l b )  
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Fig. 5. Orientation frequency distribution histograms of angles between stretching direction (X) and fold axes from four 
localities in the Scottish SW Highlands (modified from Roberts & Sanderson 1974). 
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in an arc subtended by 0; and 0~ measured from the 
maximum principal strain axis (X). In these equa- 
tions, N is the sample size and Rs is the strain ratio (Rs = 
(h/A2)l/2). Initially the frequency is independent of 
orientation but as the strain increases a preferred orien- 
tation develops which is symmetrical about the extension 
direction (X) of the finite strain ellipsoid (X i> Y I> Z); 
the dispersion about X also decreases with increasing 
strain (Fig. 6). 

Since the strain-modified uniform distributions are all 
symmetrical they plot along the/32 (symmetry) axis of 
the/31 vs/32 graph, migrating away from the position of 
the theoretical uniform distribution (/31 = 0,/32 = 1.8) 
towards larger values of/32 with increasing strain (Fig. 
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Fig. 6. Homogeneous irrotational strain-modified uniform orientation 
distributions (modified from Sanderson 1977). 

7). The displacement along the /32 axis for each 0.1 
increment of strain is considerable but approximately 
constant, even up to large values of strain. Thus, the 
graphs may be used to give sensitive estimates of strain 
over a wide range of values. 

Example of strain-modified uniform distributions 

Beach (1980) studied the orientation of belemnites 
from Britain and France. He argued that in the unde- 
formed state the orientation distribution of belemnites is 
approximately uniform (Fig. 8a) but, where the rock 
suffered an homogeneous irrotational strain, the belem- 
nites show a preferred orientation symmetrical about 
the principal extension direction (Fig. 8c). Beach did not 
attempt any strain estimates from his examples but by 
using the technique described here all the distributions 
are shown to be symmetrical (Fig. 9) and hence probably 
due to homogeneous irrotational deformation. The 
undeformed example plots exactly at the position of the 
uniform distribution while an example thought by Beach 
to be only very slightly deformed (Fig. 8b) is found to 
have a strain ratio of 1.1. The example, said to be typical 
of the belemnite orientation distributions found in the 
French Maritime Alps (Fig. 8c), gives a strain ratio of 
3.07. 
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Fig. 7. Strain-contoured fit vs/32 graph for homogeneous irrotational strain-modified uniform orientation distributions. 
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Fig. 8. Belemnite orientation frequency distribution histograms (after 
Beach 1980); (a) undeformed;  (b) very slightly deformed; (c) 

deformed. See text for discussion. 

DISCUSSION 

(a) Generality of the technique 

The technique described here is not itself a method of 
strain analysis. However, it does represent a very sensi- 
tive way of evaluating data from analytical methods 
which involve the modification of continuous frequency 
distributions by deformation. Although the examples 
considered concern only orientation data, homogeneous 
irrotational strain and Gaussian and uniform initial dis- 
tributions, the technique is nevertheless applicable to 
any type of continuous data distribution and mode of 
deformation. The only requirement is that a model 
exists for the effects of a particular type of strain on a 
particular initial distribution. 

In this respect it is worth noting that Sanderson (1977) 
did not really restrict his analysis of the strain modifica- 
tion of initially uniform distributions to irrotational 
strain, but considered the rotational components to play 
no part in determining the shape of the strain modified 
distribution, at least for passive markers. This was sub- 
sequently justified by Sanderson & Meneilly (1981, 
pp. 109-111) using Owens' (1973) development of the 
theory of strained angular density distributions (March 
1932). In general, the form of the strain-modified 
frequency distribution is determined by the initial 
distribution (shape and orientation) and the deforma- 
tion gradient tensor (relative to some defined reference 
frame). However, for the particular case of the initially 
uniform distribution, since its frequency is constant, the 
deformation gradient tensor can be factorized into a 
stretch tensor and a rotation tensor. The operation of 
the rotation tensor on a uniform distribution leaves the 
frequency unchanged and so irrotational and rotational 
deformations should produce similar strain-modified 
distributions (e.g. pure shear and simple shear result in 
the same strain-modified frequency distributions, D. J. 
Sanderson, personal communication 1982). Thus, distri- 
butions of belemnite orientations which are asymmetric 
with respect to the principal extension direction (Beach 
1980, see Fig. 10 for examples), and therefore plot off 
the/32 axis (Fig. 9), are more likely to be due to non-uni- 
form initial distributions rather than rotational strains. It 
is possible that original sedimentary influences (e.g. 
palaeoslopes and/or current activity) were responsible 
for inducing slight preferred orientations such that the 
initial distributions responded as (platykurtic) Gaussian 
distributions. 

(b) Comparison of different data distributions 

The/31VS/32 graphs (e.g. Figs. 3 and 7) show that if the 
type and magnitude of strain is constant then the shape 
of the strain-modified distribution is a function only of 
the initial distribution. Thus, if the fold axes and belem- 
nites considered previously had occurred in the same 
region and had suffered similar amounts of homogene- 
ous irrotational strain they would nevertheless show 
different frequency distributions. Furthermore, 

1 

/ ~ f  . . . .  ~ l---<,o;;'~'do~-.~,d ~f_---~yp~';.i ' -  3.07 

uniform 2 gaussion 3 
BETA TWO 

Fig. 9. Analysis of belemnite orientation frequency distributions using strain contoured/31 vs 13 2 graph for homogeneous 
irrotational strain-modified uniform orientation distribution. Examples plotted on the f12 axis are symmetrical and therefore 
due to homogeneous irrotational strain of initially uniform orientation distributions. The other examples are probably due 

to deformation of initially nonuniform distributions. 
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Fig. 10. Asymmetric belemnite orientation frequency distribution 
histograms (after Beach 1980). 

although slight variations in homogeneous irrotational 
strain magnitudes have little effect on the modified 
shape of initially uniform distributions (see Fig. 7), 
initially Gaussian distributions can vary markedly. For 
example, using Fig. 3, a strain variation of 1 < X / Y  < 3 
acting on an initial Gaussian distribution with/x u2 = 20 ° 
and ~b = 10 ° can produce distributions ranging from 
unimodal bell-shapes, through J or reverse-J shapes to 
bimodal shapes. In spite of this, it is still possible to 
determine accurate estimates of deformational para- 
meters using the techniques described here. 

(c) Data collection 

While the use of /31 and /32 to classify continuous 
frequency distributions is theoretically soundly based, in 
practice it does involve several assumptions concerning 
the collection of the actual data. In particular, it is 
assumed that the data are a representative sample of the 
total population whereas in reality it is more likely to be 
either random or biased. The data distribution is there- 
fore only an estimate of the total population distribution. 
Thus, the values of/3l and/32 calculated from the data are 
only estimates of the real values and hence do not 
necessarily define the best-fit theoretical distribution, 
which in turn means that the derived deformational 
parameters (i.e. X / Y  and ~b) may not be the true values. 
This problem is not a peculiarity of the/31,/32 technique 
but of the data collection process. It is therefore common 
to all methods of comparison and as such emphasises the 
general need for careful data collection. Since the/31,/32 
technique involves more sample statistics than other 
goodness-of-fit tests it is to be preferred as a method of 
comparing observed and expected distributions. 

It is also assumed that the pre-deformation distribu- 
tion of the data is known. In particular, the initial 
standard deviation must be accurately defined since this 
influences the shape of the strain-modified distribution 
and determines the precise form of the/31 vs/32 graph to 
be used. If the standard deviation is not accurately 
defined then a range of strain-modified distributions is 
possible which consequently require different/31 vs/32 
graphs for analysis. Thus, rather than a single estimate 

of the deformational parameters a range of values is 
obtained which may vary considerably depending on the 
imprecision in defining the initial standard deviation. 
Unfortunately, the definition of the pre-deformation 
data distribution may not be easy and in any case will be 
subject to similar data sampling problems as those dis- 
cussed above. 

Finally, although the examples discussed in this con- 
tribution involve orientation data, they have, neverthe- 
less, been analysed using linear rather than circular 
sample statistics and distributions. It is therefore neces- 
sary to construct the histograms of the data about some 
external reference direction defined as zero orientation. 
The range of the histograms can then be considered to be 
+90 ° provided data < - 9 0  ° or > +90 ° are transferred to 
the opposite regions of the histogram (e.g. 95 ° is plotted 
as -85°). This approach is convenient but ultimately 
should be replaced by a more rigorous technique based 
on the/31,/32 analysis of circular distributions. 

CONCLUSIONS 

(1) A method of strain analysis is described based on 
the modification of continuous frequency distributions 
by progressive deformation. 

(2) Such distributions can be accurately described in 
terms of their shape via the dimensionless coefficients of 
skewness ( i l l )  and kurtosis (/32); graphs of/3a vs/32 can 
therefore be used to distinguish different distributions. 

(3) Theoretical studies of the effects of deformation 
on initial frequency distributions (i.e. strain-induced 
shape modifications) can be used to contour/31 vs/32 
graphs in terms of strain. 

(4) The positions of natural data distributions on 
these graphs consequently give the natural strain mag- 
nitudes. 
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